"); //-->
1.1.1 三极管选型原则
行业发展总趋势为:小型化、表贴化,高频化,高效率化,集成化,绿色化。重点突出小型化和表贴化。
近年来,随着MOSFET的发展,在低功率高速开关领域,MOSFET正逐步替代三极管,行业主流厂家对三极管的研发投入也逐年减少,在芯片技术方面基本没有投入,器件的技术发展主要体现在晶圆工艺的升级(6inch wafer转8inch wafer)及封装小型化及表贴化上。另外,相对普通三极管,RF三极管的主要发展方向是低压电压供电,低噪声,高频及高效。
选型原则如下:
1)禁选处于生命周期末期的插件封装器件,如TO92
2)优选行业主流小型化表贴器件,如SOT23,STO323,SOT523等,对于多管应用,优先考虑双管封装如SOT363及SOT563
3)对于开关应用场景,优先考虑选用MOSFET
4)射频三极管优选低电压供电,低噪声,高频及高效器件。
1.1.2 MOSFET选型原则行业技术发展总趋势为:小型化、表贴化,高频化,高功率密度化,高效率化,高可靠性,集成化,绿色化。重点突出高频化,高功率密度化,高可靠性及集成化。
行业技术发展趋势主要体现在MOSFET芯片材料,晶圆技术,芯片技术及封装技术的演进及发展。选型原则如下:
禁止选用处于生命周期末期的插件封装器件(能源用TO220,TO247除外)及封装为SO8,DPAK的表贴器件。
对于信号MOSFET推荐选用栅极集成TVS保护的小型化表贴器件。
1)对于Vds<=250V的功率MOSFET
单管优选行业主流无引脚表贴功率封装POWERPAK 5X6及POWERPAK3X3,在散热不满足要求的情况下可考虑翼型带引脚表贴封装D2PAK;
Buck上下管集成方案优选下管sourcing down POWERPAK5X6 dual封装;
电源模块考虑到器件散热问题,可选行业主流插件封装TO220
对于缓起及热插拔应用,选用器件时请重点评估器件是否工作在其安全工作区域
开关应用需同缓起,热插拔及ORing应用区分选型
超高频领域(1MHz以上),可考虑用GANMOS替代,从而提高效率降低系统面积。
2)对于Vds介于600V~650V的高压功率MOSFET,其用于AC电源模块优先考虑选用Vds为650V的器件;
封装根据电源模块散热及结构设计要求推荐选用表贴器件POWERPAK 8X8及插件TO247,未来还可考虑表贴器件POWERPAK5X6;
对于在电路中工作频率不高的场景如当前PFC电路,优选寄生二极管不带快恢复特性的MOSFET(如INFINEON C3,C6,P6系类),对于电路中工作频率较高的场景如LLC电路,优选寄生二极管带恢复特性的MOSFET(如INFINEON CFD系列);
对于电源效率要求不是特别高的场景,部分MOSFET可以考虑用高速IGBT替换,达到降成本的目的。对于高效模块,可考虑选用SIC MOSFET替代传统Si MOSFET,达到提升电源工作效率的目的;
对于Vds高于800V的MOSFET,如果Id大于5A,建议考虑选用IGBT,如果Id小于5A,建议选用行业主流封装TO247,TO220或D2PAK;
原则上禁止选用耗尽性JFET,如遇到特殊电流需使用,请在行业主流封装SOT23Z中选择。
2. 三极管和MOSFET器件选型关键要素2.1. 三极管选型关键要素三极管在电路中有放大和开关两种作用,目前在我司的电路中三极管主要起开关作用。在选择三极管的时候,从以下几个方面进行考虑:参数、封装、性能(低压降、低阻抗、高放大倍数、高开关效率)
1)参数的选择:三极管有很多参数,选型对于三极管的参数没有特殊的要求,需要关注的参数有Vceo、Vcbo、Vebo、Ic(av)、Pd、Hef。比较重要的参数是Vceo、Ic(av),对于Vceo的值有时厂家会给Vces的值,不能用Vces的值作为Vceo,因为Vces=Vcbo>Vceo。如果器件的电压和电流值在降额后满足需求,Pd可以不用过多的去考虑(三极管做放大用、作电压线性转化以及三极管功率比较大的场合需要考虑Pd)。
在满足降额规范要求的前提下,考虑输出电流和相应的耗散功率,击穿电压大小,放大倍数等参数。同时,应尽量选用热阻小,允许结温高的器件。
2)封装:三极管的封装的发展趋势是小型化、表贴化、平脚化、无引脚化。
封装质量优劣的是用芯片面积与封装面积的比值来判断的,比值越接近1越好。目前三极管最小封装是sot883(DFN1006-3),优选封装有sot883、sot663、sot23、sot89、sot223、sot666。由于三极管的功率需求越来越小,所以小封装三极管是其引进的一个方向,在参数满足规格的前提下尽量选择小封装。
3)性能:选择低Vce(sat)的、低阻抗的器件。目前NXP、ON、ZETEX等均推出了低饱和压降的器件,在选型时可以优先考虑。
2.2. MOSFET选型关键要素2.2.1 电压极限参数1)漏源击穿电压V(BR)DSS:漏源击穿电压V(BR)DSS一般是在结温Tj=25℃下,VGS=0V,ID为数百A下的测试值,由于V(BR)DSS和Rds(on)成反比,因此多数厂家MOSFET的上限为1000V。V(BR)DSS与温度有关,Tj上升100℃,V(BR)DSS约线性增加10%。反之,Tj下降时,V(BR)DSS以相同比例下降。这一特性可以看作MOSFET的优点之一,它保证了内部成千上万个元胞在雪崩击穿时,难以使雪崩电流密集于某一点而导致器件损坏(不同于功率三极管)。
2)最大额定栅源电压VGS
栅源之间的SiO2氧化层很薄,因此在二者之间加上不高的电压就会在内部形成很高的电场,而电场超过SiO2材料的承受能力便发生击穿导致器件失效。
最大额定栅源电压VGS多数厂家资料为20V,(对于低驱动电压的低压MOSFET一般为10V)。目前很多厂对于高驱动电压MOSFET已将此极限电压提高到30V。SIC MOSFET则多为10V~25V间,启动电压不对称,选用时需注意驱动部分的设计。
2.2.2 影响损耗的主要参数对于MOSFET,当频率小于100KHz时,主要是导通损耗占的比重最大。因此影响损耗的主要参数为通态电阻Rds(on)。一般厂家给出的Rds(on)值,是在规定的VGS(如10V)ID(一般为标称电流值)、Tj(一般为25℃)条件下的值。
对于Rds(on),有以下特性:对生产厂家来说,在相同设计及工艺条件下,如果提高MOSFET的Rds(on)值,会导致Rds(on)升高。Rds(on)值随着结温升高而近似线性升高。其结果是导致损耗增加,例如下图IRF640的Rds(on)与Tj关系图,如果结温在120℃时,Rds(on)值将是25℃时的1.8倍。因此导通损耗I2*Rds(on)也将增加到1.8倍;相对于Si MOSFET,SiC MOSFET由于其禁带宽度较Si MOSFET宽,所以其温度特性明显优于Si MOSFET。在150℃的条件下,SIC MOSFET的Rds(on)仅仅比在25℃条件下增加20%。
与VGS的关系:为了将Rds(on)降低到最小,至少VGS要提高到10V(4V驱动的产品约外加5V)才可降到最小。此外,即使将VGS提高到12V~15V以上,也不会对Rds(on)的降低起多大作用(如果在占空比小的情况下有接近或超出直流额定电流的运用,另当别论),不必要地增大这种栅压,会加大充电电流,增加驱动损耗,并容易在栅源间发生尖峰电压。增加栅源击穿的失效概率。因此对于一般的MOSFET,12V驱动即可。
相同的结温下,随着ID增大,Rds(on)有轻微增大。计算功耗时,可以忽略该变化。在实际使用中,如果增大ID值,导致发热上升,那是因为散热条件(热阻)不变,ID增加,功耗P= I2* Rds(on)增加,结温升高,Rds(on)随之升高,进一步加大功耗。
另外,当频率超过100KHz后,开关损耗所占的比例不能忽视,这时就必须注意器件本身的栅极电荷Qg,输出电容Coss,以及栅极驱动电阻对开关损耗的影响。特别是通态电阻越小的MOSFET,通常其元胞密度就越大,因此Qg、Coss就会越大,这就会增大开关损耗。
近来,由于MOSFET的应用频率进一步提高,在低压大电流的MOSFET生产上,还需注意从工艺设计上改善MOSFET内部寄生的Rg,以降低MOSFET的开关损耗,提高应用频率(或提高电流)
2.2.3 电流处理能力参数限制电流处理能力的最终因素是最大可允许结温(通常厂家规定为150℃)。一般用可持续直流漏极电流ID、额定峰值电流IDM来表征。
1)可持续直流漏极电流ID
实际可允许最大ID值是决定于Rds(on)、结-壳热阻RJC(它决定于器件的芯片封装材料及工艺水平)、最大可允许结温Tj,以及壳温Tc等机构参数。它们满足一下公式:
I2* Rds(on)*Rjc=Tjmax-Tc
其中Rds(on)、Rjc、Tjmax由器件本身的特性决定,Tc则与设计有关,如散热条件、功耗等(注:可允许最大漏极功耗Pd= I2*Rds(on)=(Tjmax-Tc)/Rjc)。一般厂家资料给出的是壳温下的ID值,另外有些厂家还给出了最大ID和Tc之间的关系曲线。
以IRF640为例,电流标称值为18A(Tc=25℃下),其ID和Tc的关系如上图。由图可见,当壳温有25℃变到125℃时,可见最大直流漏极电流由18A下降到8A。必须注意,Tc=25℃下的ID仅仅具有参考意义(可以进行不同管子之间的比较),因为它是假定散热条件足够的好,外壳温度始终为25℃(在实际应用中,根本不可能),从而根据公式I2* Rds(on)*Rjc=Tjmax-Tc推算出来的。但在实际应用情况下,由于环境温度和实际散热条件的限制,壳温通常远远大于25℃,且最高结温通常要保持在20℃以上的降额。因此,可允许直流漏极电流必须随温度升高而降额使用。
2)额定峰值电流IDM
如果电流脉冲或占空比较小时,则允许其超过ID值,但其脉冲宽度或占空比需要受到最大可允许结温的限制。一般厂家资料规定25℃下的额定峰值电流IDM值为ID值的四倍,并且是在VGS=20V下得到的。
2.2.4 与栅极驱动有关的参数由于在G、D、S各极之间存在不可避免的寄生电容。因此,在驱动时,该电容器有充放电电流和充放电时间,这便是驱动损耗、开关损耗产生的根本原因。器件的开关特性通常以Qg来衡量。
1)输入电容Ciss、反向传输电容Crss、输出电容Coss
由于在G、D、S各极之间存在不可避免的寄生电容,因此,在驱动时,改电容器有充放电电流和充放电时间,这便是驱动损耗、开关损耗产生的根本原因。器件的开关特性通常以Qg来衡量。
1)输入电容Ciss、反向传输电容Crss、输出电容Coss
如上图,Ciss=Cgd+Cgs,Crss=Cgd,Coss=Cds+Cgd
2)总的栅极电荷Qg
它表示在开通过程中要达到规定的栅极电压所需要的充电电荷。是在规定的VDS、ID及VGS(一般为10V)条件下测得的。
由于弥勒效应的存在,Cgd虽然比Cgs小很多,但在驱动过程中它起的作用最大,因此客观来讲,考察MOSFET的Qg比考察Ciss等来得更为准确一些。
另外还有栅极电荷Qge、栅极电荷(弥勒电荷)Qgd两个参数。
如下图以IRF640为例,示意它们的波形。
3)栅极电阻Rg,开通延迟时间td(on)、上升时间tr、关断延迟时间td(off)、下降时间tf
同样描述的是器件的开关性能,同时关系到器件的驱动损耗。其具体值与测试条件密切相关。比较不同的管子时尤其要引起注意。否则容易为厂家所误导。
2.2.5 与可靠性有关的参数1)最大可允许结温Tjmax
这是可靠性最为重要的参数,对MOSFET,一般厂家都标为150℃,也有125℃和175℃的特殊半导体器件。
2)雪崩额定值
由于漏感和分布电感以及关断时的di/dt,可能会产生电压尖峰从而强制MOSFET进入雪崩击穿区,VDS被钳制在实际的击穿电压点,但如果进入雪崩击穿区的实际很短,能量很小,器件本身则可以将其消耗掉而不至于损坏。
有三个参数能表征这一特性,即可允许单次脉冲雪崩能量EAS、可允许重复脉冲雪崩能量EAS(脉宽受到最大结温限制)、发生雪崩时的初始最大雪崩电流IAR。雪崩能量额定值随结温升高而显著下降,随发生雪崩时起始电流的增加而下降。
如果器件工作时有雪崩情况,注意在老化工程中,由于结温会相应升高,雪崩能力会相应下降,如果下降到一定程度则有可能是器件损坏,并且这种损坏通常只呈现一定的比例。(当然也有可能是其它原因引起MOSFET损坏,如变压器在高温大电流下的磁饱和)
3)栅极漏电流IGSS、漏极断态漏电流IDSS
这两个参数在具体设计时可能用不到,但它限制了器件内部工艺、材料的好坏,其值尽管可能是小到mA级或uA级,但比较器件时,通过测试它随电压变化(尤其是高温下)的情况也可以比较判断器件的优劣。
2.2.6 与寄生源漏二极管有关的参数在某些电路可能要运用到体内二极管进行续流,此时则需要考察二极管的参数。
1)的dv/dt值
体寄生二极管续流时,少子空穴也参与了导电,并且浓度很高,当二极管导通周期结束,外电路使二极管反转时,如果D、S之间的电压上升过快,大量少子空穴有一部分来不及复合掉,引起横向流过体区的电流,该电流在P+区和源区N+之间形成的压降可能使寄生的三极管导通,(漏极D相当于寄生NPN三极管的集电极、P+相当于基极,源极S极相当于****极,基极****极有正向压降时,由于dv/dt大,电压上升快,集电极与****极之间也有正电压,因此寄生三极管导通),电流会密集于第一个导通的元胞,从而使器件热击穿损坏。
2)其它参数
a.反向恢复特性,有反向恢复电荷、反向恢复时间。续流运用时要考虑匹配。
b.电流电压参数,有正向压降VSD,其电流参数IS、ISM与ID、IDM相同,相对于SI MOSFET,SIC MOSFET的寄生二极管的正向压降,这是因为SIC的拐点电压(Knee voltage:point at which diode turn on)是Si的3倍,这非常近似于它们禁带宽度的比值,因此SIC MOSFET的VSD约为2.5V,而Si MOSFET的VSD约为0,8V。
2.2.7 封装封装选用主要结合系统的结构设计,热设计,单板加工工艺及可靠性考虑,选择具有合适封装形式及热阻的封装。常见功率MOSFET封装为DPAK、D2PAK、PowerPAK 5X6、PowerPAK 3X3、DirectFET、TO220、TO247,小信号MOSFET对应的SOT23,SOT323等,后继引进中主要考虑PowerPAK 8X8,PowerPAK SO8 5X6 Dual,PowerPAK 5X6 dual cool,SO8封装器件在行业属退出期器件,选型时禁选,DPAK封装器件在行业属饱和期器件,选型时限选;插件封装在能源场景应用中优选,比如TO220,TO247。
来源:硬件十万个为什么
*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。